
Software Size Units (SSU)

My major concern about all the software size measures described in Chapter 6, is that
they use “Points” to signify software size. A “point” is something that does not occupy
space in geometry. “Points” are used in games – points are “scored” or counted. A
“point” where they are used (in games) – complexity does not affect them. A point never
becomes more than one point whatever be the complex maneuvers that have to be
achieved in scoring it. No factor, like wind factor, sun factor, humidity factor affect the
points.

Only in software industry do we have points being affected by complexity and other
factors.

Where there are no universally accepted units of measure, the un-written convention has
been to use “Units” as the unit of measure.

For example, the unit of measure for heat was BTU (British Thermal unit).

Enzymes in medicine are measured in IU (International Units) or simply “Units”. Best
example would be Insulin - administered to diabetics in “so many” units per day – say 15
Units of Insulin per day.

“Unit” is used in this context to mean a “Unit of Measure” for something.

Software size has come to be measured in “Points” – from the time that Function Points
are introduced for software size estimation, all others have followed this. Perhaps, it is
that “Points are scored” – so functions are counted (scored).

In enzymes that are measured in units, they catalyze some action. In heat too, BTU
catalyzes some action (raise the temperature).

In software too, a Unit catalyzes development action.

Hence I propose Software Size Units (SSU) for measuring software size – taking
inspiration from the above!

Definition of SSU (Software Size Unit)

What does a software system comprise of? It basically consist of two types of elements,
namely,

a. Data Elements – the data that enters the system, is processed upon and is
either stored or given out as outputs

b. Process Elements – the software routines that process data elements and
achieve the desired functionality

The terms are explained below.

Data Element – it is an input to the system. It may enter the system thru user input; or
read from a master data file/table; or received from another system. It could be a
constant (used as parameters for the software system) or a variable. It is classified into
three types, namely, Numeric, Alphanumeric and Control.

a. Numeric Data Element consists of digits 0 (zero) to 9, one decimal point
and a positive or negative sign. Numeric Data Element transforms and is
transformed in the system. The whole system revolves around this data
element.

b. Alphanumeric Data Element consists of all humanly readable characters,

including space character. The Alphanumeric Data Element simply passes
thru the system. When it enters, validation checks are performed to ensure
their type and length.

c. Control Data Element - Control Data Element triggers some process within

the system. Links on a web site, command buttons on a screen etc. are
examples of Control Data Elements.

Process Elements – Process Elements act on the Data elements and transform input to
desired outputs. Process Elements are classified into three types, namely, Input
Process, Output Process, Associate Process,

a. Input Process Elements (IPE) get Data Elements from external environment
into the system – may be thru keyboard, or from a file/table, or from a device
like scanner, or from a network.

b. Output Process Element (OPE) sends Data Elements from the system to

the external environment – may be to a screen, or a report, or to a device like
printer or to a network.

c. Associate Process Element (APE) – This is a process element that helps

either IPE or OPE or assist in maintaining certain system functions the results
of which are sometimes not seen by the users. Some of the examples of APE
are –
i) A software routine that helps generate data for a report where the

report is generated by a reporting tool like Crystal Reports
ii) A software routine that manages the session in a web application
iii) A software routine that manages / interfaces with any of the network

layers
iv) A software routine that manages / interfaces with any of the

application tiers

System – is a software that fulfils some need and performs a set of defined functions

Enters the system – it is a necessary input given either from the key board by the user,
or is retrieved from a master file/table which was prepared thru some other system, or is
received over network from another system.

The size of a software system is derived from the data elements and process
elements that comprise the system. A SSU (Software Size Unit) is a Process
Element that has five Numeric Data Elements.

Procedure for Software Size Estimation
There is a free software tool – SSUPal – that can be used to estimate software size in
SSU on the web site http://www.effortestimator.com - feel free to download and use it.

Delivered Software Size (DSS) – this is measured in Software Size Units (SSU) and is
used for agreement between the customer and the vendor. This would be used for
estimating the effort required for developing the software. The effort required for
delivering the software would be the sum of effort required for Requirements Analysis,
Software Design, Construction and Testing.

Now this needs some explanation.

a. Numeric Data Element has a weight of 1; an Alphanumeric Data Element has
a weight of 0.35 and a Control Data Element has a weight of 0.75. These
weights are used for normalizing the data elements while estimating the
software size.

b. Input Process Element has a weight of 1, Output Process Element has a
weight of 0.75 and Associated Process Element has a weight of 1.25. These
weights are used for normalizing the process elements while estimating the
software size.

Now we are ready to carry out Delivered Software Size.

a. Enumerate the process elements that comprise the system along with its
nature – that is – Input / Output / Associated

b. Against each process element count data elements, namely, NDE, ADE
and CDE

c. Against each process element compute equivalent Total Data Elements
(TDE) for the Process Element using the formula –

i. TDE = NDE + (ADE * 0.35) + (CDE * 0.75)
d. Compute the Software Size Units for each process element using the

formula
i. SSU = (TDE / 5) * Process Element Weight

e. Sum up the SSUs of each Process Element to obtain SSUs for the project
before contingency allowance

f. Add a contingency allowance of 10% towards possible requirement
changes to the Total SSU to obtain size estimate for the project

The below table would illustrate the procedure for a Warehouse Management System
software development project.

Table 5.1 – Example of a software estimate using SSU

Sl. No Process Element
Nature of
PE NDE ADE CDE

Total Data
Elements

(TDE)
Equivalent

SSU

1 Material Master Definition Input 4 3 0 5.05 1.01

2 Supplier Master Definition Input 1 12 0 5.2 1.04

3 Material Categories Definition Input 1 1 0 1.35 0.27

4 Units Definition Input 1 1 0 1.35 0.27

5 Category - Supplier Mapping Input 1 1 0 1.35 0.27

6 Administration - User Definition Input 0 4 0 1.4 0.28

7 Material Availability Enquiry Input 1 4 0 2.4 0.48

8 Material Enquiry search routine Associated 1 4 0 2.4 0.48

9 Purchase Order Entry Input 11 12 2 16.7 3.34

10 Material Receipts Entry Input 9 12 1 13.95 2.79

11 Material Issues Input 3 8 0 5.8 1.16

12 Material Returns Input 1 8 0 3.8 0.76

13 Reports Input 6 2 0 6.7 1.34

14 Issues Costing Routine Associated 3 12 0 7.2 1.44

15 Balances Costing Routine Associated 6 20 0 13 2.6

16 Below Re-order Level Report Output 4 12 0 8.2 1.64

17 Category-wise Report Output 6 15 0 11.25 2.25

18 Consumption Report for a period Output 2 18 0 8.3 1.66

19 Goods Receipts Register for a period Output 7 11 0 10.85 2.17

20 HML Report Output 2 7 0 4.45 0.89

21 Material Category Report Output 3 8 0 5.8 1.16

22 Material Category Summary Output 2 8 0 4.8 0.96

23 Material Code Consumption for a period Output 5 9 0 8.15 1.63

24 Material Issues Register Output 4 14 0 8.9 1.78

25 Non-Moving Items Register Output 5 9 0 8.15 1.63

26 Po Receipts for a period Output 6 14 0 10.9 2.18

27 Priced Stores Ledger for a period Output 18 15 0 23.25 4.65

28 Priced Stores Ledger Summary for a period Output 18 15 0 23.25 4.65

29 Project Consumption Output 4 8 0 6.8 1.36

30 Source-wise Report Output 3 7 0 5.45 1.09

31 Stock Report as on a date Output 4 8 0 6.8 1.36

32 VED Report Output 4 8 0 6.8 1.36

33 Vendor-wise Receipts report Output 8 15 0 13.25 2.65

34 Online Help Output 0 40 0 14 2.8

35 Totals 154 345 3 277 55.4

36 Contingency Alloance @10% 15.4 34.5 0.3 27.7 5.54

37 Estimated SSUs for the project 169.4 379.5 3.3 304.7 60.94

Now, we may round up the software size to the next higher multiple of 5 units and say
the estimated size of the software project for development of software for Warehouse
Management System is 65 SSUs.

Software Development Effort Estimation from SSU

Now once having estimated the size of the software to be developed, we have to
estimate the software development effort.

As the work carried out at various stages requiring persons of different and varying skill
sets in software development life cycle, it is necessary to have different productivity
figures for each of the skill sets, namely

a. Requirements Analysis Effort – We use SSUs for estimating the effort required
for carrying out Requirements Analysis, which includes eliciting user
requirements, developing software requirements, preparation of necessary
documentation to capture requirements and peer review of the documentation
and fixing defects, if any. To convert SSUs into effort, we use productivity of
Requirements Analysis (say 6 hours per SSU rounded off to the next higher
multiple of 8)

b. Software Design Effort – We use SSUs for estimating the effort required for
carrying out software design including database design, architecture design, user
interface design, report design and program design, preparation of necessary
documentation, and peer review of design and fixing defects, if any. To convert
SSUs into effort, we use productivity of Software Design (say 8 hours per SSU
rounded off to the next higher multiple of 8)

c. Construction Effort – We use SSUs for estimating the effort required for
construction activity that includes coding, independent verification, independent
unit testing and fixing defects, if any. To convert SSUs into effort, we use
productivity of Construction (say 10 hours per SSU rounded off to the next higher
multiple of 8)

d. Testing Effort – We use SSUs for estimating the effort required to carry out
independent software testing. Software testing includes integration testing,
system testing and acceptance testing. To convert SSUs into effort, we use
productivity of Testing (say 4 hours per SSU rounded off to the next higher
multiple of 8)

The rounding off to the next higher multiple of 8 is to ensure that we arrive at a round
figure of person days. We may estimate in fragment of a person day, but in reality, any
fragment of a day would be wasted during execution.

Thus for the above project, let us arrive at the effort required for software development,
using the below table

Table 5.2 – Effort Estimation using SSU
Sl. No Stage SSU Size Productivity

in PH per
SSU

Total
Effort in
PH

Total
Effort
rounded
to next
multiple
of 8

1 Requirements Analysis 65 6 390 392
2 Software Design 65 8 520 520
3 Construction 65 10 650 656
4 Testing 65 4 260 264
5 Total Effort 1832

Thus the effort in person days is 1,832. Now add the person days required for
administrative activities like Project Initiation, Project Planning, and Project Closure and
Project Management overhead, if necessary.

Now we may use this value to schedule the project and arrive at the final effort for
computing the cost of the project.

How to obtain Productivity figures?
The productivity is unique to an organization owing to the specific environment and
unique processes that are used. Therefore, the best method is to conduct a productivity
study using Work Sampling (it is a work measurement technique) method. This is best
accomplished by a qualified Industrial Engineer. The local chapter of Industrial
Engineers would be glad to oblige your request for carrying out the Work Sampling
Study and develop the productivity norms for your organization. I suggest that you carry
out this study whenever there are major changes in the development environment or
methods (development processes) or organizational structure.

FAQ – (Frequently Asked Questions) about SSU computation
Q: Can a screen be equated to an Input Process Element?
 A: If a screen just takes inputs only from the user – then it can be equated to an Input

Process Element. But in many cases, a screen captures some info, derives and
displays some info to assist the user in the entry process. In such cases, the screen

needs to be considered as more than one Input Process Element – it may contain
input, out put and associated process elements too.

Q: Then does it mean, that one screen can have multiple Input Output Process and

Associated Elements?
A: Yes

Q: How do we treat Enquiry Screens?
A: An enquiry screen comprises of one or more input data elements and a set of output

data elements. Therefore, the input data capture portion may be treated as Input
Process Element and the output portion of the screen may be treated as Output
Process Element. One suggestion, treat all screens as “Screens” – do not classify
them as “Input Screens” or “Enquiry Screens” or “Output Screens”.

Q: How do we treat Combo Box, List Box, List View etc?
A: SSU is derived and used before design / development of software. We derive SSUs

from the user specification. The data elements are as perceived by the end-user.
How these are implemented in the code come later when the application is designed
and constructed. Remember, that SSU is pre-design. If however, you are working
based on an existing application as your specification (as it happens in porting
projects or some web site applications), there could be one APE to fill those controls
and the number and type of data elements may be counted depending on the
number selectable from that control.

Q: Are the weights for data elements and process elements to be used as they are or

can we customize them?
A: If one thing that characterizes software development, it is diversity. If you feel that

different weights are justified in view of the unique nature of your projects, you may
certainly do so.

